Laurie Stevison & Amanda Clark
If you are using this code with the video, note that some slides
have been added post-recording and are not shown. For this video we
will be working with the USpop.csv
dataset again. Make an R
Notebook for this walk through tutorial to save all the code you will be
learning. We will cover:
maps
to plot points on a mapdplyr
syntax to accomplish
the same goalsYou are working within an R project (check in the top right corner of RStudio - you should see the project name “R_Mini_Course”).
This means that the project directory will also be set as working directory. The exception is in a R Notebook, where the working directory is where the R Notebook is saved.
You should be saving your notebooks in the R Project and using
../..
to point at the main project directory.
Before starting, it may be helpful to have a chunk of code that does the following:
rm(list=ls())
library(<package-name>)
sessionInfo()
list.files(getwd())
## ── Attaching packages ──────────────────────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 0.3.5
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ── Conflicts ─────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ purrr::map() masks maps::map()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 11.7
##
## Matrix products: default
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] forcats_0.5.2 stringr_1.4.1 dplyr_1.0.10 purrr_0.3.5 readr_2.1.3
## [6] tidyr_1.2.1 tibble_3.1.8 ggplot2_3.4.0 tidyverse_1.3.2 maps_3.4.1
## [11] knitr_1.40 rmarkdown_2.17
##
## loaded via a namespace (and not attached):
## [1] lubridate_1.9.0 assertthat_0.2.1 digest_0.6.30 utf8_1.2.2
## [5] R6_2.5.1 cellranger_1.1.0 backports_1.4.1 reprex_2.0.2
## [9] evaluate_0.18 httr_1.4.4 highr_0.9 pillar_1.8.1
## [13] rlang_1.0.6 googlesheets4_1.0.1 readxl_1.4.1 rstudioapi_0.14
## [17] jquerylib_0.1.4 googledrive_2.0.0 munsell_0.5.0 broom_1.0.1
## [21] compiler_4.2.1 modelr_0.1.9 xfun_0.34 pkgconfig_2.0.3
## [25] htmltools_0.5.3 tidyselect_1.2.0 fansi_1.0.3 crayon_1.5.2
## [29] tzdb_0.3.0 dbplyr_2.2.1 withr_2.5.0 grid_4.2.1
## [33] jsonlite_1.8.3 gtable_0.3.1 lifecycle_1.0.3 DBI_1.1.3
## [37] magrittr_2.0.3 scales_1.2.1 cli_3.4.1 stringi_1.7.8
## [41] cachem_1.0.6 fs_1.5.2 xml2_1.3.3 bslib_0.4.1
## [45] ellipsis_0.3.2 generics_0.1.3 vctrs_0.5.0 tools_4.2.1
## [49] glue_1.6.2 hms_1.1.2 fastmap_1.1.0 yaml_2.3.6
## [53] timechange_0.1.1 colorspace_2.0-3 gargle_1.2.1 rvest_1.0.3
## [57] haven_2.5.1 sass_0.4.2
## [1] "_site.yml" "4.02.Basic_Summary_Statistics_in_R_files"
## [3] "4.02.Basic_Summary_Statistics_in_R.html" "4.02.Basic_Summary_Statistics_in_R.Rmd"
## [5] "4.03.Data_Manipulation_in_R.Rmd" "4.04.Advanced_Statistical_Concepts_in_R.Rmd"
## [7] "4.05.R_on_CL.Rmd" "4.06.Programming_in_R.Rmd"
## [9] "5.03.Advanced_Graphing_in_R.Rmd" "about.Rmd"
## [11] "Activity1_intro.pdf" "activity1.html"
## [13] "activity1.Rmd" "activity1key.html"
## [15] "activity1key.Rmd" "activity2.html"
## [17] "activity2.Rmd" "activity3.html"
## [19] "activity3.Rmd" "Body_Fat.pdf"
## [21] "Congrats.html" "Congrats.Rmd"
## [23] "data" "docs"
## [25] "images" "index.html"
## [27] "index.Rmd" "LICENSE"
## [29] "module1.html" "module1.Rmd"
## [31] "module2.html" "module2.Rmd"
## [33] "module3.html" "module3.Rmd"
## [35] "module4.html" "module4.Rmd"
## [37] "module5.html" "module5.Rmd"
## [39] "module6.html" "module6.Rmd"
## [41] "module7.html" "module7.Rmd"
## [43] "modules" "R_Mini_Course.Rproj"
## [45] "raw_data" "README.md"
## [47] "README.Rmd" "site_libs"
You will need to add path information to the raw_data
directory once you have uncompressed the data tarball. As we did in the
last video, read the USpop.csv
file into an object called
“data”:
You may also read in the previously made object into “data”:
## Year Population
## 1 1790 3929214
## 2 1800 5308483
## 3 1810 7239881
## 4 1820 9638453
## 5 1830 12866020
## 6 1840 17069453
Click the data object in the environment tab in RStudio. Notice we have two columns of data, year and population size.
An easy new column to add is a midpoint between two existing columns.
In this way, we can add five to every item in the vector
data$Year
to create a new vector
data$midpoint
:
Click the data object in the environment tab in RStudio again. Notice there is now a third column labeled midpoint.
Occasionally, you may see alternative methods of performing some task
in R using tools from the meta package tidyverse
. We will
introduce some basic utility from this meta package throughout the
modules. Let’s add the new column using the dplyr
and
magrittr
packages from tidyverse
%>%
from the magrittr
package is a pipe! This
means it is used to pass information from the left of the symbol to
functions on the right.
Here we are passing the contents of data
to the
dplyr
function mutate()
creating a new column
named “midpoint.” Midpoint contains the value in Year plus 5.
Another way to add to a dataset is to initialize a vector outside of a data frame.
In setting up this vector, we have made it the same length as our
existing vector data$Year
. We also set it up to be
numeric
indicating we want R to treat it as numbers.
We will store population growth in this vector, and will thus need to compare the population size in year i to year i-1. What concepts have you learned in this course that will make this easy?
Similar to how we’ve done this in shell, we set a loop variable
i
and set the loop to start at 2 and stop at the length of
data$Year
. Because growth compares intervals of time, we
will have a vector that is one less than the current vector length.
However, R doesn’t like this, so we will set the first value as missing
data.
Examine the formula in the loop. Why do we add 1 to the growth for each iteration?
Here, we’ve reset the object data
as a combination of
the existing object and our new vector.
We combine data and growth using dplyr
:
Here, we are using bind_cols
to combining
“tidydata” & “growth”. Notice that we coerced “growth” into
a tibble (a tidy data frame) to match the structure of “tidydata”. We
wanted the column to be called “growth”, so we renamed it with
rename
!
dplyr (a grammar of data manipulation) was developed with the end user in mind. The package contains a few clear, explanatory verbs that perform common data manipulations. Here are a few other manipulations and functions you should be aware about:
Getting subsets of a dataset with
filter
# only rows where population size is greater than or equal to the mean
tidydata_pop_filter <- tidydata %>% filter(Population >= mean(Population))
Use the help pane to search for slice_max()
or in the
console type ?slice_max
. Try to craft and execute a command
using this function to 50% of the rows with the highest growth values.
Guidance: slice_max(growth, prop = .5)
Getting specific columns or variables with
select
Getting the mean population size and growth with
summarise
& across
dplyr
tidyverse
was created by Hadley Wickham (Statistician
and Chief Scientists at RStudio) and associates. It is meant to make the
coding syntax and structure more intuitive and understandable.
dplyr
is one of many other packages within the
tidyverse
, but they all share the same underlying design
and data structures (i.e., they work well together). Interested in
learning more? Check out
tidyverse
. Check out
the book R for Data Science. Check
out the dplyr
cheatsheet.
Now, back to the data set. As we did before, let’s explore this new data visually
Does this data follow a normal distribution?
Transformation is a nice way of converting your data into a normal distribution, an underlying assumption of many statistical tests. Below, we impose a log transformation.
How does this distribution compare to the last one?
Does the transformation change much for the plot?
Let’s see how our transformation impacts a test for a statistical correlation.
##
## Spearman's rank correlation rho
##
## data: data$Year and data$growth
## S = 76, p-value = 3.799e-06
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.9570864
##
## Spearman's rank correlation rho
##
## data: data$Year and data$log
## S = 76, p-value = 3.799e-06
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.9570864
Why are these values the same?
Next, let’s examine another R built-in dataset,
quakes
lat | long | depth | mag | stations |
---|---|---|---|---|
-20.42 | 181.62 | 562 | 4.8 | 41 |
-20.62 | 181.03 | 650 | 4.2 | 15 |
-26.00 | 184.10 | 42 | 5.4 | 43 |
-17.97 | 181.66 | 626 | 4.1 | 19 |
-20.42 | 181.96 | 649 | 4.0 | 11 |
-19.68 | 184.31 | 195 | 4.0 | 12 |
-11.70 | 166.10 | 82 | 4.8 | 43 |
-28.11 | 181.93 | 194 | 4.4 | 15 |
-28.74 | 181.74 | 211 | 4.7 | 35 |
-17.47 | 179.59 | 622 | 4.3 | 19 |
-21.44 | 180.69 | 583 | 4.4 | 13 |
-12.26 | 167.00 | 249 | 4.6 | 16 |
-18.54 | 182.11 | 554 | 4.4 | 19 |
-21.00 | 181.66 | 600 | 4.4 | 10 |
-20.70 | 169.92 | 139 | 6.1 | 94 |
-15.94 | 184.95 | 306 | 4.3 | 11 |
-13.64 | 165.96 | 50 | 6.0 | 83 |
-17.83 | 181.50 | 590 | 4.5 | 21 |
-23.50 | 179.78 | 570 | 4.4 | 13 |
-22.63 | 180.31 | 598 | 4.4 | 18 |
-20.84 | 181.16 | 576 | 4.5 | 17 |
-10.98 | 166.32 | 211 | 4.2 | 12 |
-23.30 | 180.16 | 512 | 4.4 | 18 |
-30.20 | 182.00 | 125 | 4.7 | 22 |
-19.66 | 180.28 | 431 | 5.4 | 57 |
-17.94 | 181.49 | 537 | 4.0 | 15 |
-14.72 | 167.51 | 155 | 4.6 | 18 |
-16.46 | 180.79 | 498 | 5.2 | 79 |
-20.97 | 181.47 | 582 | 4.5 | 25 |
-19.84 | 182.37 | 328 | 4.4 | 17 |
-22.58 | 179.24 | 553 | 4.6 | 21 |
-16.32 | 166.74 | 50 | 4.7 | 30 |
-15.55 | 185.05 | 292 | 4.8 | 42 |
-23.55 | 180.80 | 349 | 4.0 | 10 |
-16.30 | 186.00 | 48 | 4.5 | 10 |
-25.82 | 179.33 | 600 | 4.3 | 13 |
-18.73 | 169.23 | 206 | 4.5 | 17 |
-17.64 | 181.28 | 574 | 4.6 | 17 |
-17.66 | 181.40 | 585 | 4.1 | 17 |
-18.82 | 169.33 | 230 | 4.4 | 11 |
-37.37 | 176.78 | 263 | 4.7 | 34 |
-15.31 | 186.10 | 96 | 4.6 | 32 |
-24.97 | 179.82 | 511 | 4.4 | 23 |
-15.49 | 186.04 | 94 | 4.3 | 26 |
-19.23 | 169.41 | 246 | 4.6 | 27 |
-30.10 | 182.30 | 56 | 4.9 | 34 |
-26.40 | 181.70 | 329 | 4.5 | 24 |
-11.77 | 166.32 | 70 | 4.4 | 18 |
-24.12 | 180.08 | 493 | 4.3 | 21 |
-18.97 | 185.25 | 129 | 5.1 | 73 |
-18.75 | 182.35 | 554 | 4.2 | 13 |
-19.26 | 184.42 | 223 | 4.0 | 15 |
-22.75 | 173.20 | 46 | 4.6 | 26 |
-21.37 | 180.67 | 593 | 4.3 | 13 |
-20.10 | 182.16 | 489 | 4.2 | 16 |
-19.85 | 182.13 | 562 | 4.4 | 31 |
-22.70 | 181.00 | 445 | 4.5 | 17 |
-22.06 | 180.60 | 584 | 4.0 | 11 |
-17.80 | 181.35 | 535 | 4.4 | 23 |
-24.20 | 179.20 | 530 | 4.3 | 12 |
-20.69 | 181.55 | 582 | 4.7 | 35 |
-21.16 | 182.40 | 260 | 4.1 | 12 |
-13.82 | 172.38 | 613 | 5.0 | 61 |
-11.49 | 166.22 | 84 | 4.6 | 32 |
-20.68 | 181.41 | 593 | 4.9 | 40 |
-17.10 | 184.93 | 286 | 4.7 | 25 |
-20.14 | 181.60 | 587 | 4.1 | 13 |
-21.96 | 179.62 | 627 | 5.0 | 45 |
-20.42 | 181.86 | 530 | 4.5 | 27 |
-15.46 | 187.81 | 40 | 5.5 | 91 |
-15.31 | 185.80 | 152 | 4.0 | 11 |
-19.86 | 184.35 | 201 | 4.5 | 30 |
-11.55 | 166.20 | 96 | 4.3 | 14 |
-23.74 | 179.99 | 506 | 5.2 | 75 |
-17.70 | 181.23 | 546 | 4.4 | 35 |
-23.54 | 180.04 | 564 | 4.3 | 15 |
-19.21 | 184.70 | 197 | 4.1 | 11 |
-12.11 | 167.06 | 265 | 4.5 | 23 |
-21.81 | 181.71 | 323 | 4.2 | 15 |
-28.98 | 181.11 | 304 | 5.3 | 60 |
-34.02 | 180.21 | 75 | 5.2 | 65 |
-23.84 | 180.99 | 367 | 4.5 | 27 |
-19.57 | 182.38 | 579 | 4.6 | 38 |
-20.12 | 183.40 | 284 | 4.3 | 15 |
-17.70 | 181.70 | 450 | 4.0 | 11 |
-19.66 | 184.31 | 170 | 4.3 | 15 |
-21.50 | 170.50 | 117 | 4.7 | 32 |
-23.64 | 179.96 | 538 | 4.5 | 26 |
-15.43 | 186.30 | 123 | 4.2 | 16 |
-15.41 | 186.44 | 69 | 4.3 | 42 |
-15.48 | 167.53 | 128 | 5.1 | 61 |
-13.36 | 167.06 | 236 | 4.7 | 22 |
-20.64 | 182.02 | 497 | 5.2 | 64 |
-19.72 | 169.71 | 271 | 4.2 | 14 |
-15.44 | 185.26 | 224 | 4.2 | 21 |
-19.73 | 182.40 | 375 | 4.0 | 18 |
-27.24 | 181.11 | 365 | 4.5 | 21 |
-18.16 | 183.41 | 306 | 5.2 | 54 |
-13.66 | 166.54 | 50 | 5.1 | 45 |
-24.57 | 179.92 | 484 | 4.7 | 33 |
-16.98 | 185.61 | 108 | 4.1 | 12 |
-26.20 | 178.41 | 583 | 4.6 | 25 |
-21.88 | 180.39 | 608 | 4.7 | 30 |
-33.00 | 181.60 | 72 | 4.7 | 22 |
-21.33 | 180.69 | 636 | 4.6 | 29 |
-19.44 | 183.50 | 293 | 4.2 | 15 |
-34.89 | 180.60 | 42 | 4.4 | 25 |
-20.24 | 169.49 | 100 | 4.6 | 22 |
-22.55 | 185.90 | 42 | 5.7 | 76 |
-36.95 | 177.81 | 146 | 5.0 | 35 |
-15.75 | 185.23 | 280 | 4.5 | 28 |
-16.85 | 182.31 | 388 | 4.2 | 14 |
-19.06 | 182.45 | 477 | 4.0 | 16 |
-26.11 | 178.30 | 617 | 4.8 | 39 |
-26.20 | 178.35 | 606 | 4.4 | 21 |
-26.13 | 178.31 | 609 | 4.2 | 25 |
-13.66 | 172.23 | 46 | 5.3 | 67 |
-13.47 | 172.29 | 64 | 4.7 | 14 |
-14.60 | 167.40 | 178 | 4.8 | 52 |
-18.96 | 169.48 | 248 | 4.2 | 13 |
-14.65 | 166.97 | 82 | 4.8 | 28 |
-19.90 | 178.90 | 81 | 4.3 | 11 |
-22.05 | 180.40 | 606 | 4.7 | 27 |
-19.22 | 182.43 | 571 | 4.5 | 23 |
-31.24 | 180.60 | 328 | 4.4 | 18 |
-17.93 | 167.89 | 49 | 5.1 | 43 |
-19.30 | 183.84 | 517 | 4.2 | 21 |
-26.53 | 178.57 | 600 | 5.0 | 69 |
-27.72 | 181.70 | 94 | 4.8 | 59 |
-19.19 | 183.51 | 307 | 4.3 | 19 |
-17.43 | 185.43 | 189 | 4.5 | 22 |
-17.05 | 181.22 | 527 | 4.2 | 24 |
-19.52 | 168.98 | 63 | 4.5 | 21 |
-23.71 | 180.30 | 510 | 4.6 | 30 |
-21.30 | 180.82 | 624 | 4.3 | 14 |
-16.24 | 168.02 | 53 | 4.7 | 12 |
-16.14 | 187.32 | 42 | 5.1 | 68 |
-23.95 | 182.80 | 199 | 4.6 | 14 |
-25.20 | 182.60 | 149 | 4.9 | 31 |
-18.84 | 184.16 | 210 | 4.2 | 17 |
-12.66 | 169.46 | 658 | 4.6 | 43 |
-20.65 | 181.40 | 582 | 4.0 | 14 |
-13.23 | 167.10 | 220 | 5.0 | 46 |
-29.91 | 181.43 | 205 | 4.4 | 34 |
-14.31 | 173.50 | 614 | 4.2 | 23 |
-20.10 | 184.40 | 186 | 4.2 | 10 |
-17.80 | 185.17 | 97 | 4.4 | 22 |
-21.27 | 173.49 | 48 | 4.9 | 42 |
-23.58 | 180.17 | 462 | 5.3 | 63 |
-17.90 | 181.50 | 573 | 4.0 | 19 |
-23.34 | 184.50 | 56 | 5.7 | 106 |
-15.56 | 167.62 | 127 | 6.4 | 122 |
-23.83 | 182.56 | 229 | 4.3 | 24 |
-11.80 | 165.80 | 112 | 4.2 | 20 |
-15.54 | 167.68 | 140 | 4.7 | 16 |
-20.65 | 181.32 | 597 | 4.7 | 39 |
-11.75 | 166.07 | 69 | 4.2 | 14 |
-24.81 | 180.00 | 452 | 4.3 | 19 |
-20.90 | 169.84 | 93 | 4.9 | 31 |
-11.34 | 166.24 | 103 | 4.6 | 30 |
-17.98 | 180.50 | 626 | 4.1 | 19 |
-24.34 | 179.52 | 504 | 4.8 | 34 |
-13.86 | 167.16 | 202 | 4.6 | 30 |
-35.56 | 180.20 | 42 | 4.6 | 32 |
-35.48 | 179.90 | 59 | 4.8 | 35 |
-34.20 | 179.43 | 40 | 5.0 | 37 |
-26.00 | 182.12 | 205 | 5.6 | 98 |
-19.89 | 183.84 | 244 | 5.3 | 73 |
-23.43 | 180.00 | 553 | 4.7 | 41 |
-18.89 | 169.42 | 239 | 4.5 | 27 |
-17.82 | 181.83 | 640 | 4.3 | 24 |
-25.68 | 180.34 | 434 | 4.6 | 41 |
-20.20 | 180.90 | 627 | 4.1 | 11 |
-15.20 | 184.68 | 99 | 4.1 | 14 |
-15.03 | 182.29 | 399 | 4.1 | 10 |
-32.22 | 180.20 | 216 | 5.7 | 90 |
-22.64 | 180.64 | 544 | 5.0 | 50 |
-17.42 | 185.16 | 206 | 4.5 | 22 |
-17.84 | 181.48 | 542 | 4.1 | 20 |
-15.02 | 184.24 | 339 | 4.6 | 27 |
-18.04 | 181.75 | 640 | 4.5 | 47 |
-24.60 | 183.50 | 67 | 4.3 | 25 |
-19.88 | 184.30 | 161 | 4.4 | 17 |
-20.30 | 183.00 | 375 | 4.2 | 15 |
-20.45 | 181.85 | 534 | 4.1 | 14 |
-17.67 | 187.09 | 45 | 4.9 | 62 |
-22.30 | 181.90 | 309 | 4.3 | 11 |
-19.85 | 181.85 | 576 | 4.9 | 54 |
-24.27 | 179.88 | 523 | 4.6 | 24 |
-15.85 | 185.13 | 290 | 4.6 | 29 |
-20.02 | 184.09 | 234 | 5.3 | 71 |
-18.56 | 169.31 | 223 | 4.7 | 35 |
-17.87 | 182.00 | 569 | 4.6 | 12 |
-24.08 | 179.50 | 605 | 4.1 | 21 |
-32.20 | 179.61 | 422 | 4.6 | 41 |
-20.36 | 181.19 | 637 | 4.2 | 23 |
-23.85 | 182.53 | 204 | 4.6 | 27 |
-24.00 | 182.75 | 175 | 4.5 | 14 |
-20.41 | 181.74 | 538 | 4.3 | 31 |
-17.72 | 180.30 | 595 | 5.2 | 74 |
-19.67 | 182.18 | 360 | 4.3 | 23 |
-17.70 | 182.20 | 445 | 4.0 | 12 |
-16.23 | 183.59 | 367 | 4.7 | 35 |
-26.72 | 183.35 | 190 | 4.5 | 36 |
-12.95 | 169.09 | 629 | 4.5 | 19 |
-21.97 | 182.32 | 261 | 4.3 | 13 |
-21.96 | 180.54 | 603 | 5.2 | 66 |
-20.32 | 181.69 | 508 | 4.5 | 14 |
-30.28 | 180.62 | 350 | 4.7 | 32 |
-20.20 | 182.30 | 533 | 4.2 | 11 |
-30.66 | 180.13 | 411 | 4.7 | 42 |
-16.17 | 184.10 | 338 | 4.3 | 13 |
-28.25 | 181.71 | 226 | 4.1 | 19 |
-20.47 | 185.68 | 93 | 5.4 | 85 |
-23.55 | 180.27 | 535 | 4.3 | 22 |
-20.94 | 181.58 | 573 | 4.3 | 21 |
-26.67 | 182.40 | 186 | 4.2 | 17 |
-18.13 | 181.52 | 618 | 4.6 | 41 |
-20.21 | 183.83 | 242 | 4.4 | 29 |
-18.31 | 182.39 | 342 | 4.2 | 14 |
-16.52 | 185.70 | 90 | 4.7 | 30 |
-22.36 | 171.65 | 130 | 4.6 | 39 |
-22.43 | 184.48 | 65 | 4.9 | 48 |
-20.37 | 182.10 | 397 | 4.2 | 22 |
-23.77 | 180.16 | 505 | 4.5 | 26 |
-13.65 | 166.66 | 71 | 4.9 | 52 |
-21.55 | 182.90 | 207 | 4.2 | 18 |
-16.24 | 185.75 | 154 | 4.5 | 22 |
-23.73 | 182.53 | 232 | 5.0 | 55 |
-22.34 | 171.52 | 106 | 5.0 | 43 |
-19.40 | 180.94 | 664 | 4.7 | 34 |
-24.64 | 180.81 | 397 | 4.3 | 24 |
-16.00 | 182.82 | 431 | 4.4 | 16 |
-19.62 | 185.35 | 57 | 4.9 | 31 |
-23.84 | 180.13 | 525 | 4.5 | 15 |
-23.54 | 179.93 | 574 | 4.0 | 12 |
-28.23 | 182.68 | 74 | 4.4 | 20 |
-21.68 | 180.63 | 617 | 5.0 | 63 |
-13.44 | 166.53 | 44 | 4.7 | 27 |
-24.96 | 180.22 | 470 | 4.8 | 41 |
-20.08 | 182.74 | 298 | 4.5 | 33 |
-24.36 | 182.84 | 148 | 4.1 | 16 |
-14.70 | 166.00 | 48 | 5.3 | 16 |
-18.20 | 183.68 | 107 | 4.8 | 52 |
-16.65 | 185.51 | 218 | 5.0 | 52 |
-18.11 | 181.67 | 597 | 4.6 | 28 |
-17.95 | 181.65 | 619 | 4.3 | 26 |
-15.50 | 186.90 | 46 | 4.7 | 18 |
-23.36 | 180.01 | 553 | 5.3 | 61 |
-19.15 | 169.50 | 150 | 4.2 | 12 |
-10.97 | 166.26 | 180 | 4.7 | 26 |
-14.85 | 167.24 | 97 | 4.5 | 26 |
-17.80 | 181.38 | 587 | 5.1 | 47 |
-22.50 | 170.40 | 106 | 4.9 | 38 |
-29.10 | 182.10 | 179 | 4.4 | 19 |
-20.32 | 180.88 | 680 | 4.2 | 22 |
-16.09 | 184.89 | 304 | 4.6 | 34 |
-19.18 | 169.33 | 254 | 4.7 | 35 |
-23.81 | 179.36 | 521 | 4.2 | 23 |
-23.79 | 179.89 | 526 | 4.9 | 43 |
-19.02 | 184.23 | 270 | 5.1 | 72 |
-20.90 | 181.51 | 548 | 4.7 | 32 |
-19.06 | 169.01 | 158 | 4.4 | 10 |
-17.88 | 181.47 | 562 | 4.4 | 27 |
-19.41 | 183.05 | 300 | 4.2 | 16 |
-26.17 | 184.20 | 65 | 4.9 | 37 |
-14.95 | 167.24 | 130 | 4.6 | 16 |
-18.73 | 168.80 | 82 | 4.4 | 14 |
-20.21 | 182.37 | 482 | 4.6 | 37 |
-21.29 | 180.85 | 607 | 4.5 | 23 |
-19.76 | 181.41 | 105 | 4.4 | 15 |
-22.09 | 180.38 | 590 | 4.9 | 35 |
-23.80 | 179.90 | 498 | 4.1 | 12 |
-20.16 | 181.99 | 504 | 4.2 | 11 |
-22.13 | 180.38 | 577 | 5.7 | 104 |
-17.44 | 181.40 | 529 | 4.6 | 25 |
-23.33 | 180.18 | 528 | 5.0 | 59 |
-24.78 | 179.22 | 492 | 4.3 | 16 |
-22.00 | 180.52 | 561 | 4.5 | 19 |
-19.13 | 182.51 | 579 | 5.2 | 56 |
-30.72 | 180.10 | 413 | 4.4 | 22 |
-22.32 | 180.54 | 565 | 4.2 | 12 |
-16.45 | 177.77 | 138 | 4.6 | 17 |
-17.70 | 185.00 | 383 | 4.0 | 10 |
-17.95 | 184.68 | 260 | 4.4 | 21 |
-24.40 | 179.85 | 522 | 4.7 | 29 |
-19.30 | 180.60 | 671 | 4.2 | 16 |
-21.13 | 185.32 | 123 | 4.7 | 36 |
-18.07 | 181.57 | 572 | 4.5 | 26 |
-20.60 | 182.28 | 529 | 5.0 | 50 |
-18.48 | 181.49 | 641 | 5.0 | 49 |
-13.34 | 166.20 | 67 | 4.8 | 18 |
-20.92 | 181.50 | 546 | 4.6 | 31 |
-25.31 | 179.69 | 507 | 4.6 | 35 |
-15.24 | 186.21 | 158 | 5.0 | 57 |
-16.40 | 185.86 | 148 | 5.0 | 47 |
-24.57 | 178.40 | 562 | 5.6 | 80 |
-17.94 | 181.51 | 601 | 4.0 | 16 |
-30.64 | 181.20 | 175 | 4.0 | 16 |
-18.64 | 169.32 | 260 | 4.6 | 23 |
-13.09 | 169.28 | 654 | 4.4 | 22 |
-19.68 | 184.14 | 242 | 4.8 | 40 |
-16.44 | 185.74 | 126 | 4.7 | 30 |
-21.09 | 181.38 | 555 | 4.6 | 15 |
-14.99 | 171.39 | 637 | 4.3 | 21 |
-23.30 | 179.70 | 500 | 4.7 | 29 |
-17.68 | 181.36 | 515 | 4.1 | 19 |
-22.00 | 180.53 | 583 | 4.9 | 20 |
-21.38 | 181.39 | 501 | 4.6 | 36 |
-32.62 | 181.50 | 55 | 4.8 | 26 |
-13.05 | 169.58 | 644 | 4.9 | 68 |
-12.93 | 169.63 | 641 | 5.1 | 57 |
-18.60 | 181.91 | 442 | 5.4 | 82 |
-21.34 | 181.41 | 464 | 4.5 | 21 |
-21.48 | 183.78 | 200 | 4.9 | 54 |
-17.40 | 181.02 | 479 | 4.4 | 14 |
-17.32 | 181.03 | 497 | 4.1 | 13 |
-18.77 | 169.24 | 218 | 5.3 | 53 |
-26.16 | 179.50 | 492 | 4.5 | 25 |
-12.59 | 167.10 | 325 | 4.9 | 26 |
-14.82 | 167.32 | 123 | 4.8 | 28 |
-21.79 | 183.48 | 210 | 5.2 | 69 |
-19.83 | 182.04 | 575 | 4.4 | 23 |
-29.50 | 182.31 | 129 | 4.4 | 14 |
-12.49 | 166.36 | 74 | 4.9 | 55 |
-26.10 | 182.30 | 49 | 4.4 | 11 |
-21.04 | 181.20 | 483 | 4.2 | 10 |
-10.78 | 165.77 | 93 | 4.6 | 20 |
-20.76 | 185.77 | 118 | 4.6 | 15 |
-11.41 | 166.24 | 83 | 5.3 | 55 |
-19.10 | 183.87 | 61 | 5.3 | 42 |
-23.91 | 180.00 | 534 | 4.5 | 11 |
-27.33 | 182.60 | 42 | 4.4 | 11 |
-12.25 | 166.60 | 219 | 5.0 | 28 |
-23.49 | 179.07 | 544 | 5.1 | 58 |
-27.18 | 182.18 | 56 | 4.5 | 14 |
-25.80 | 182.10 | 68 | 4.5 | 26 |
-27.19 | 182.18 | 69 | 5.4 | 68 |
-27.27 | 182.38 | 45 | 4.5 | 16 |
-27.10 | 182.18 | 43 | 4.7 | 17 |
-27.22 | 182.28 | 65 | 4.2 | 14 |
-27.38 | 181.70 | 80 | 4.8 | 13 |
-27.27 | 182.50 | 51 | 4.5 | 13 |
-27.54 | 182.50 | 68 | 4.3 | 12 |
-27.20 | 182.39 | 69 | 4.3 | 14 |
-27.71 | 182.47 | 103 | 4.3 | 11 |
-27.60 | 182.40 | 61 | 4.6 | 11 |
-27.38 | 182.39 | 69 | 4.5 | 12 |
-21.54 | 185.48 | 51 | 5.0 | 29 |
-27.21 | 182.43 | 55 | 4.6 | 10 |
-28.96 | 182.61 | 54 | 4.6 | 15 |
-12.01 | 166.29 | 59 | 4.9 | 27 |
-17.46 | 181.32 | 573 | 4.1 | 17 |
-30.17 | 182.02 | 56 | 5.5 | 68 |
-27.27 | 182.36 | 65 | 4.7 | 21 |
-17.79 | 181.32 | 587 | 5.0 | 49 |
-22.19 | 171.40 | 150 | 5.1 | 49 |
-17.10 | 182.68 | 403 | 5.5 | 82 |
-27.18 | 182.53 | 60 | 4.6 | 21 |
-11.64 | 166.47 | 130 | 4.7 | 19 |
-17.98 | 181.58 | 590 | 4.2 | 14 |
-16.90 | 185.72 | 135 | 4.0 | 22 |
-21.98 | 179.60 | 583 | 5.4 | 67 |
-32.14 | 179.90 | 406 | 4.3 | 19 |
-18.80 | 169.21 | 221 | 4.4 | 16 |
-26.78 | 183.61 | 40 | 4.6 | 22 |
-20.43 | 182.37 | 502 | 5.1 | 48 |
-18.30 | 183.20 | 103 | 4.5 | 14 |
-15.83 | 182.51 | 423 | 4.2 | 21 |
-23.44 | 182.93 | 158 | 4.1 | 20 |
-23.73 | 179.99 | 527 | 5.1 | 49 |
-19.89 | 184.08 | 219 | 5.4 | 105 |
-17.59 | 181.09 | 536 | 5.1 | 61 |
-19.77 | 181.40 | 630 | 5.1 | 54 |
-20.31 | 184.06 | 249 | 4.4 | 21 |
-15.33 | 186.75 | 48 | 5.7 | 123 |
-18.20 | 181.60 | 553 | 4.4 | 14 |
-15.36 | 186.66 | 112 | 5.1 | 57 |
-15.29 | 186.42 | 153 | 4.6 | 31 |
-15.36 | 186.71 | 130 | 5.5 | 95 |
-16.24 | 167.95 | 188 | 5.1 | 68 |
-13.47 | 167.14 | 226 | 4.4 | 26 |
-25.50 | 182.82 | 124 | 5.0 | 25 |
-14.32 | 167.33 | 204 | 5.0 | 49 |
-20.04 | 182.01 | 605 | 5.1 | 49 |
-28.83 | 181.66 | 221 | 5.1 | 63 |
-17.82 | 181.49 | 573 | 4.2 | 14 |
-27.23 | 180.98 | 401 | 4.5 | 39 |
-10.72 | 165.99 | 195 | 4.0 | 14 |
-27.00 | 183.88 | 56 | 4.9 | 36 |
-20.36 | 186.16 | 102 | 4.3 | 21 |
-27.17 | 183.68 | 44 | 4.8 | 27 |
-20.94 | 181.26 | 556 | 4.4 | 21 |
-17.46 | 181.90 | 417 | 4.2 | 14 |
-21.04 | 181.20 | 591 | 4.9 | 45 |
-23.70 | 179.60 | 646 | 4.2 | 21 |
-17.72 | 181.42 | 565 | 5.3 | 89 |
-15.87 | 188.13 | 52 | 5.0 | 30 |
-17.84 | 181.30 | 535 | 5.7 | 112 |
-13.45 | 170.30 | 641 | 5.3 | 93 |
-30.80 | 182.16 | 41 | 4.7 | 24 |
-11.63 | 166.14 | 109 | 4.6 | 36 |
-30.40 | 181.40 | 40 | 4.3 | 17 |
-26.18 | 178.59 | 548 | 5.4 | 65 |
-15.70 | 184.50 | 118 | 4.4 | 30 |
-17.95 | 181.50 | 593 | 4.3 | 16 |
-20.51 | 182.30 | 492 | 4.3 | 23 |
-15.36 | 167.51 | 123 | 4.7 | 28 |
-23.61 | 180.23 | 475 | 4.4 | 26 |
-33.20 | 181.60 | 153 | 4.2 | 21 |
-17.68 | 186.80 | 112 | 4.5 | 35 |
-22.24 | 184.56 | 99 | 4.8 | 57 |
-20.07 | 169.14 | 66 | 4.8 | 37 |
-25.04 | 180.10 | 481 | 4.3 | 15 |
-21.50 | 185.20 | 139 | 4.4 | 15 |
-14.28 | 167.26 | 211 | 5.1 | 51 |
-14.43 | 167.26 | 151 | 4.4 | 17 |
-32.70 | 181.70 | 211 | 4.4 | 40 |
-34.10 | 181.80 | 246 | 4.3 | 23 |
-19.70 | 186.20 | 47 | 4.8 | 19 |
-24.19 | 180.38 | 484 | 4.3 | 27 |
-26.60 | 182.77 | 119 | 4.5 | 29 |
-17.04 | 186.80 | 70 | 4.1 | 22 |
-22.10 | 179.71 | 579 | 5.1 | 58 |
-32.60 | 180.90 | 57 | 4.7 | 44 |
-33.00 | 182.40 | 176 | 4.6 | 28 |
-20.58 | 181.24 | 602 | 4.7 | 44 |
-20.61 | 182.60 | 488 | 4.6 | 12 |
-19.47 | 169.15 | 149 | 4.4 | 15 |
-17.47 | 180.96 | 546 | 4.2 | 23 |
-18.40 | 183.40 | 343 | 4.1 | 10 |
-23.33 | 180.26 | 530 | 4.7 | 22 |
-18.55 | 182.23 | 563 | 4.0 | 17 |
-26.16 | 178.47 | 537 | 4.8 | 33 |
-21.80 | 183.20 | 325 | 4.4 | 19 |
-27.63 | 182.93 | 80 | 4.3 | 14 |
-18.89 | 169.48 | 259 | 4.4 | 21 |
-20.30 | 182.30 | 476 | 4.5 | 10 |
-20.56 | 182.04 | 499 | 4.5 | 29 |
-16.10 | 185.32 | 257 | 4.7 | 30 |
-12.66 | 166.37 | 165 | 4.3 | 18 |
-21.05 | 184.68 | 136 | 4.7 | 29 |
-17.97 | 168.52 | 146 | 4.8 | 33 |
-19.83 | 182.54 | 524 | 4.6 | 14 |
-22.55 | 183.81 | 82 | 5.1 | 68 |
-22.28 | 183.52 | 90 | 4.7 | 19 |
-15.72 | 185.64 | 138 | 4.3 | 21 |
-20.85 | 181.59 | 499 | 5.1 | 91 |
-21.11 | 181.50 | 538 | 5.5 | 104 |
-25.31 | 180.15 | 467 | 4.5 | 25 |
-26.46 | 182.50 | 184 | 4.3 | 11 |
-24.09 | 179.68 | 538 | 4.3 | 21 |
-16.96 | 167.70 | 45 | 4.7 | 23 |
-23.19 | 182.80 | 237 | 4.3 | 18 |
-20.81 | 184.70 | 162 | 4.3 | 20 |
-15.03 | 167.32 | 136 | 4.6 | 20 |
-18.06 | 181.59 | 604 | 4.5 | 23 |
-19.00 | 185.60 | 107 | 4.5 | 15 |
-23.53 | 179.99 | 538 | 5.4 | 87 |
-18.18 | 180.63 | 639 | 4.6 | 39 |
-15.66 | 186.80 | 45 | 4.4 | 11 |
-18.00 | 180.62 | 636 | 5.0 | 100 |
-18.08 | 180.70 | 628 | 5.2 | 72 |
-18.05 | 180.86 | 632 | 4.4 | 15 |
-29.90 | 181.16 | 215 | 5.1 | 51 |
-20.90 | 181.90 | 556 | 4.4 | 17 |
-15.61 | 167.50 | 135 | 4.4 | 21 |
-16.03 | 185.43 | 297 | 4.8 | 25 |
-17.68 | 181.11 | 568 | 4.4 | 22 |
-31.94 | 180.57 | 168 | 4.7 | 39 |
-19.14 | 184.36 | 269 | 4.7 | 31 |
-18.00 | 185.48 | 143 | 4.4 | 29 |
-16.95 | 185.94 | 95 | 4.3 | 12 |
-10.79 | 166.06 | 142 | 5.0 | 40 |
-20.83 | 185.90 | 104 | 4.5 | 19 |
-32.90 | 181.60 | 169 | 4.6 | 27 |
-37.93 | 177.47 | 65 | 5.4 | 65 |
-29.09 | 183.20 | 54 | 4.6 | 23 |
-23.56 | 180.23 | 474 | 4.5 | 13 |
-19.60 | 185.20 | 125 | 4.4 | 13 |
-21.39 | 180.68 | 617 | 4.5 | 18 |
-14.85 | 184.87 | 294 | 4.1 | 10 |
-22.70 | 183.30 | 180 | 4.0 | 13 |
-32.42 | 181.21 | 47 | 4.9 | 39 |
-17.90 | 181.30 | 593 | 4.1 | 13 |
-23.58 | 183.40 | 94 | 5.2 | 79 |
-34.40 | 180.50 | 201 | 4.4 | 41 |
-17.61 | 181.20 | 537 | 4.1 | 11 |
-21.07 | 181.13 | 594 | 4.9 | 43 |
-13.84 | 170.62 | 638 | 4.6 | 20 |
-30.24 | 181.63 | 80 | 4.5 | 17 |
-18.49 | 169.04 | 211 | 4.8 | 30 |
-23.45 | 180.23 | 520 | 4.2 | 19 |
-16.04 | 183.54 | 384 | 4.2 | 23 |
-17.14 | 185.31 | 223 | 4.1 | 15 |
-22.54 | 172.91 | 54 | 5.5 | 71 |
-15.90 | 185.30 | 57 | 4.4 | 19 |
-30.04 | 181.20 | 49 | 4.8 | 20 |
-24.03 | 180.22 | 508 | 4.2 | 23 |
-18.89 | 184.46 | 242 | 4.8 | 36 |
-16.51 | 187.10 | 62 | 4.9 | 46 |
-20.10 | 186.30 | 63 | 4.6 | 19 |
-21.06 | 183.81 | 203 | 4.5 | 34 |
-13.07 | 166.87 | 132 | 4.4 | 24 |
-23.46 | 180.09 | 543 | 4.6 | 28 |
-19.41 | 182.30 | 589 | 4.2 | 19 |
-11.81 | 165.98 | 51 | 4.7 | 28 |
-11.76 | 165.96 | 45 | 4.4 | 51 |
-12.08 | 165.76 | 63 | 4.5 | 51 |
-25.59 | 180.02 | 485 | 4.9 | 48 |
-26.54 | 183.63 | 66 | 4.7 | 34 |
-20.90 | 184.28 | 58 | 5.5 | 92 |
-16.99 | 187.00 | 70 | 4.7 | 30 |
-23.46 | 180.17 | 541 | 4.6 | 32 |
-17.81 | 181.82 | 598 | 4.1 | 14 |
-15.17 | 187.20 | 50 | 4.7 | 28 |
-11.67 | 166.02 | 102 | 4.6 | 21 |
-20.75 | 184.52 | 144 | 4.3 | 25 |
-19.50 | 186.90 | 58 | 4.4 | 20 |
-26.18 | 179.79 | 460 | 4.7 | 44 |
-20.66 | 185.77 | 69 | 4.3 | 25 |
-19.22 | 182.54 | 570 | 4.1 | 22 |
-24.68 | 183.33 | 70 | 4.7 | 30 |
-15.43 | 167.38 | 137 | 4.5 | 16 |
-32.45 | 181.15 | 41 | 5.5 | 81 |
-21.31 | 180.84 | 586 | 4.5 | 17 |
-15.44 | 167.18 | 140 | 4.6 | 44 |
-13.26 | 167.01 | 213 | 5.1 | 70 |
-15.26 | 183.13 | 393 | 4.4 | 28 |
-33.57 | 180.80 | 51 | 4.7 | 35 |
-15.77 | 167.01 | 64 | 5.5 | 73 |
-15.79 | 166.83 | 45 | 4.6 | 39 |
-21.00 | 183.20 | 296 | 4.0 | 16 |
-16.28 | 166.94 | 50 | 4.6 | 24 |
-23.28 | 184.60 | 44 | 4.8 | 34 |
-16.10 | 167.25 | 68 | 4.7 | 36 |
-17.70 | 181.31 | 549 | 4.7 | 33 |
-15.96 | 166.69 | 150 | 4.2 | 20 |
-15.95 | 167.34 | 47 | 5.4 | 87 |
-17.56 | 181.59 | 543 | 4.6 | 34 |
-15.90 | 167.42 | 40 | 5.5 | 86 |
-15.29 | 166.90 | 100 | 4.2 | 15 |
-15.86 | 166.85 | 85 | 4.5 | 22 |
-16.20 | 166.80 | 98 | 4.5 | 21 |
-15.71 | 166.91 | 58 | 4.8 | 20 |
-16.45 | 167.54 | 125 | 4.6 | 18 |
-11.54 | 166.18 | 89 | 5.4 | 80 |
-19.61 | 181.91 | 590 | 4.6 | 34 |
-15.61 | 187.15 | 49 | 5.0 | 30 |
-21.16 | 181.41 | 543 | 4.3 | 17 |
-20.65 | 182.22 | 506 | 4.3 | 24 |
-20.33 | 168.71 | 40 | 4.8 | 38 |
-15.08 | 166.62 | 42 | 4.7 | 23 |
-23.28 | 184.61 | 76 | 4.7 | 36 |
-23.44 | 184.60 | 63 | 4.8 | 27 |
-23.12 | 184.42 | 104 | 4.2 | 17 |
-23.65 | 184.46 | 93 | 4.2 | 16 |
-22.91 | 183.95 | 64 | 5.9 | 118 |
-22.06 | 180.47 | 587 | 4.6 | 28 |
-13.56 | 166.49 | 83 | 4.5 | 25 |
-17.99 | 181.57 | 579 | 4.9 | 49 |
-23.92 | 184.47 | 40 | 4.7 | 17 |
-30.69 | 182.10 | 62 | 4.9 | 25 |
-21.92 | 182.80 | 273 | 5.3 | 78 |
-25.04 | 180.97 | 393 | 4.2 | 21 |
-19.92 | 183.91 | 264 | 4.2 | 23 |
-27.75 | 182.26 | 174 | 4.5 | 18 |
-17.71 | 181.18 | 574 | 5.2 | 67 |
-19.60 | 183.84 | 309 | 4.5 | 23 |
-34.68 | 179.82 | 75 | 5.6 | 79 |
-14.46 | 167.26 | 195 | 5.2 | 87 |
-18.85 | 187.55 | 44 | 4.8 | 35 |
-17.02 | 182.41 | 420 | 4.5 | 29 |
-20.41 | 186.51 | 63 | 5.0 | 28 |
-18.18 | 182.04 | 609 | 4.4 | 26 |
-16.49 | 187.80 | 40 | 4.5 | 18 |
-17.74 | 181.31 | 575 | 4.6 | 42 |
-20.49 | 181.69 | 559 | 4.5 | 24 |
-18.51 | 182.64 | 405 | 5.2 | 74 |
-27.28 | 183.40 | 70 | 5.1 | 54 |
-15.90 | 167.16 | 41 | 4.8 | 42 |
-20.57 | 181.33 | 605 | 4.3 | 18 |
-11.25 | 166.36 | 130 | 5.1 | 55 |
-20.04 | 181.87 | 577 | 4.7 | 19 |
-20.89 | 181.25 | 599 | 4.6 | 20 |
-16.62 | 186.74 | 82 | 4.8 | 51 |
-20.09 | 168.75 | 50 | 4.6 | 23 |
-24.96 | 179.87 | 480 | 4.4 | 25 |
-20.95 | 181.42 | 559 | 4.6 | 27 |
-23.31 | 179.27 | 566 | 5.1 | 49 |
-20.95 | 181.06 | 611 | 4.3 | 20 |
-21.58 | 181.90 | 409 | 4.4 | 19 |
-13.62 | 167.15 | 209 | 4.7 | 30 |
-12.72 | 166.28 | 70 | 4.8 | 47 |
-21.79 | 185.00 | 74 | 4.1 | 15 |
-20.48 | 169.76 | 134 | 4.6 | 33 |
-12.84 | 166.78 | 150 | 4.9 | 35 |
-17.02 | 182.93 | 406 | 4.0 | 17 |
-23.89 | 182.39 | 243 | 4.7 | 32 |
-23.07 | 184.03 | 89 | 4.7 | 32 |
-27.98 | 181.96 | 53 | 5.2 | 89 |
-28.10 | 182.25 | 68 | 4.6 | 18 |
-21.24 | 180.81 | 605 | 4.6 | 34 |
-21.24 | 180.86 | 615 | 4.9 | 23 |
-19.89 | 174.46 | 546 | 5.7 | 99 |
-32.82 | 179.80 | 176 | 4.7 | 26 |
-22.00 | 185.50 | 52 | 4.4 | 18 |
-21.57 | 185.62 | 66 | 4.9 | 38 |
-24.50 | 180.92 | 377 | 4.8 | 43 |
-33.03 | 180.20 | 186 | 4.6 | 27 |
-30.09 | 182.40 | 51 | 4.4 | 18 |
-22.75 | 170.99 | 67 | 4.8 | 35 |
-17.99 | 168.98 | 234 | 4.7 | 28 |
-19.60 | 181.87 | 597 | 4.2 | 18 |
-15.65 | 186.26 | 64 | 5.1 | 54 |
-17.78 | 181.53 | 511 | 4.8 | 56 |
-22.04 | 184.91 | 47 | 4.9 | 47 |
-20.06 | 168.69 | 49 | 5.1 | 49 |
-18.07 | 181.54 | 546 | 4.3 | 28 |
-12.85 | 165.67 | 75 | 4.4 | 30 |
-33.29 | 181.30 | 60 | 4.7 | 33 |
-34.63 | 179.10 | 278 | 4.7 | 24 |
-24.18 | 179.02 | 550 | 5.3 | 86 |
-23.78 | 180.31 | 518 | 5.1 | 71 |
-22.37 | 171.50 | 116 | 4.9 | 38 |
-23.97 | 179.91 | 518 | 4.5 | 23 |
-34.12 | 181.75 | 75 | 4.7 | 41 |
-25.25 | 179.86 | 491 | 4.2 | 23 |
-22.87 | 172.65 | 56 | 5.1 | 50 |
-18.48 | 182.37 | 376 | 4.8 | 57 |
-21.46 | 181.02 | 584 | 4.2 | 18 |
-28.56 | 183.47 | 48 | 4.8 | 56 |
-28.56 | 183.59 | 53 | 4.4 | 20 |
-21.30 | 180.92 | 617 | 4.5 | 26 |
-20.08 | 183.22 | 294 | 4.3 | 18 |
-18.82 | 182.21 | 417 | 5.6 | 129 |
-19.51 | 183.97 | 280 | 4.0 | 16 |
-12.05 | 167.39 | 332 | 5.0 | 36 |
-17.40 | 186.54 | 85 | 4.2 | 28 |
-23.93 | 180.18 | 525 | 4.6 | 31 |
-21.23 | 181.09 | 613 | 4.6 | 18 |
-16.23 | 167.91 | 182 | 4.5 | 28 |
-28.15 | 183.40 | 57 | 5.0 | 32 |
-20.81 | 185.01 | 79 | 4.7 | 42 |
-20.72 | 181.41 | 595 | 4.6 | 36 |
-23.29 | 184.00 | 164 | 4.8 | 50 |
-38.46 | 176.03 | 148 | 4.6 | 44 |
-15.48 | 186.73 | 82 | 4.4 | 17 |
-37.03 | 177.52 | 153 | 5.6 | 87 |
-20.48 | 181.38 | 556 | 4.2 | 13 |
-18.12 | 181.88 | 649 | 5.4 | 88 |
-18.17 | 181.98 | 651 | 4.8 | 43 |
-11.40 | 166.07 | 93 | 5.6 | 94 |
-23.10 | 180.12 | 533 | 4.4 | 27 |
-14.28 | 170.34 | 642 | 4.7 | 29 |
-22.87 | 171.72 | 47 | 4.6 | 27 |
-17.59 | 180.98 | 548 | 5.1 | 79 |
-27.60 | 182.10 | 154 | 4.6 | 22 |
-17.94 | 180.60 | 627 | 4.5 | 29 |
-17.88 | 180.58 | 622 | 4.2 | 23 |
-30.01 | 180.80 | 286 | 4.8 | 43 |
-19.19 | 182.30 | 390 | 4.9 | 48 |
-18.14 | 180.87 | 624 | 5.5 | 105 |
-23.46 | 180.11 | 539 | 5.0 | 41 |
-18.44 | 181.04 | 624 | 4.2 | 21 |
-18.21 | 180.87 | 631 | 5.2 | 69 |
-18.26 | 180.98 | 631 | 4.8 | 36 |
-15.85 | 184.83 | 299 | 4.4 | 30 |
-23.82 | 180.09 | 498 | 4.8 | 40 |
-18.60 | 184.28 | 255 | 4.4 | 31 |
-17.80 | 181.32 | 539 | 4.1 | 12 |
-10.78 | 166.10 | 195 | 4.9 | 45 |
-18.12 | 181.71 | 594 | 4.6 | 24 |
-19.34 | 182.62 | 573 | 4.5 | 32 |
-15.34 | 167.10 | 128 | 5.3 | 18 |
-24.97 | 182.85 | 137 | 4.8 | 40 |
-15.97 | 186.08 | 143 | 4.6 | 41 |
-23.47 | 180.24 | 511 | 4.8 | 37 |
-23.11 | 179.15 | 564 | 4.7 | 17 |
-20.54 | 181.66 | 559 | 4.9 | 50 |
-18.92 | 169.37 | 248 | 5.3 | 60 |
-20.16 | 184.27 | 210 | 4.4 | 27 |
-25.48 | 180.94 | 390 | 4.6 | 33 |
-18.19 | 181.74 | 616 | 4.3 | 17 |
-15.35 | 186.40 | 98 | 4.4 | 17 |
-18.69 | 169.10 | 218 | 4.2 | 27 |
-18.89 | 181.24 | 655 | 4.1 | 14 |
-17.61 | 183.32 | 356 | 4.2 | 15 |
-20.93 | 181.54 | 564 | 5.0 | 64 |
-17.60 | 181.50 | 548 | 4.1 | 10 |
-17.96 | 181.40 | 655 | 4.3 | 20 |
-18.80 | 182.41 | 385 | 5.2 | 67 |
-20.61 | 182.44 | 518 | 4.2 | 10 |
-20.74 | 181.53 | 598 | 4.5 | 36 |
-25.23 | 179.86 | 476 | 4.4 | 29 |
-23.90 | 179.90 | 579 | 4.4 | 16 |
-18.07 | 181.58 | 603 | 5.0 | 65 |
-15.43 | 185.19 | 249 | 4.0 | 11 |
-14.30 | 167.32 | 208 | 4.8 | 25 |
-18.04 | 181.57 | 587 | 5.0 | 51 |
-13.90 | 167.18 | 221 | 4.2 | 21 |
-17.64 | 177.01 | 545 | 5.2 | 91 |
-17.98 | 181.51 | 586 | 5.2 | 68 |
-25.00 | 180.00 | 488 | 4.5 | 10 |
-19.45 | 184.48 | 246 | 4.3 | 15 |
-16.11 | 187.48 | 61 | 4.5 | 19 |
-23.73 | 179.98 | 524 | 4.6 | 11 |
-17.74 | 186.78 | 104 | 5.1 | 71 |
-21.56 | 183.23 | 271 | 4.4 | 36 |
-20.97 | 181.72 | 487 | 4.3 | 16 |
-15.45 | 186.73 | 83 | 4.7 | 37 |
-15.93 | 167.91 | 183 | 5.6 | 109 |
-21.47 | 185.86 | 55 | 4.9 | 46 |
-21.44 | 170.45 | 166 | 5.1 | 22 |
-22.16 | 180.49 | 586 | 4.6 | 13 |
-13.36 | 172.76 | 618 | 4.4 | 18 |
-21.22 | 181.51 | 524 | 4.8 | 49 |
-26.10 | 182.50 | 133 | 4.2 | 17 |
-18.35 | 185.27 | 201 | 4.7 | 57 |
-17.20 | 182.90 | 383 | 4.1 | 11 |
-22.42 | 171.40 | 86 | 4.7 | 33 |
-17.91 | 181.48 | 555 | 4.0 | 17 |
-26.53 | 178.30 | 605 | 4.9 | 43 |
-26.50 | 178.29 | 609 | 5.0 | 50 |
-16.31 | 168.08 | 204 | 4.5 | 16 |
-18.76 | 169.71 | 287 | 4.4 | 23 |
-17.10 | 182.80 | 390 | 4.0 | 14 |
-19.28 | 182.78 | 348 | 4.5 | 30 |
-23.50 | 180.00 | 550 | 4.7 | 23 |
-21.26 | 181.69 | 487 | 4.4 | 20 |
-17.97 | 181.48 | 578 | 4.7 | 43 |
-26.02 | 181.20 | 361 | 4.7 | 32 |
-30.30 | 180.80 | 275 | 4.0 | 14 |
-24.89 | 179.67 | 498 | 4.2 | 14 |
-14.57 | 167.24 | 162 | 4.5 | 18 |
-15.40 | 186.87 | 78 | 4.7 | 44 |
-22.06 | 183.95 | 134 | 4.5 | 17 |
-25.14 | 178.42 | 554 | 4.1 | 15 |
-20.30 | 181.40 | 608 | 4.6 | 13 |
-25.28 | 181.17 | 367 | 4.3 | 25 |
-20.63 | 181.61 | 599 | 4.6 | 30 |
-19.02 | 186.83 | 45 | 5.2 | 65 |
-22.10 | 185.30 | 50 | 4.6 | 22 |
-38.59 | 175.70 | 162 | 4.7 | 36 |
-19.30 | 183.00 | 302 | 5.0 | 65 |
-31.03 | 181.59 | 57 | 5.2 | 49 |
-30.51 | 181.30 | 203 | 4.4 | 20 |
-22.55 | 183.34 | 66 | 4.6 | 18 |
-22.14 | 180.64 | 591 | 4.5 | 18 |
-25.60 | 180.30 | 440 | 4.0 | 12 |
-18.04 | 181.84 | 611 | 4.2 | 20 |
-21.29 | 185.77 | 57 | 5.3 | 69 |
-21.08 | 180.85 | 627 | 5.9 | 119 |
-20.64 | 169.66 | 89 | 4.9 | 42 |
-24.41 | 180.03 | 500 | 4.5 | 34 |
-12.16 | 167.03 | 264 | 4.4 | 14 |
-17.10 | 185.90 | 127 | 5.4 | 75 |
-21.13 | 185.60 | 85 | 5.3 | 86 |
-12.34 | 167.43 | 50 | 5.1 | 47 |
-16.43 | 186.73 | 75 | 4.1 | 20 |
-20.70 | 184.30 | 182 | 4.3 | 17 |
-21.18 | 180.92 | 619 | 4.5 | 18 |
-17.78 | 185.33 | 223 | 4.1 | 10 |
-21.57 | 183.86 | 156 | 5.1 | 70 |
-13.70 | 166.75 | 46 | 5.3 | 71 |
-12.27 | 167.41 | 50 | 4.5 | 29 |
-19.10 | 184.52 | 230 | 4.1 | 16 |
-19.85 | 184.51 | 184 | 4.4 | 26 |
-11.37 | 166.55 | 188 | 4.7 | 24 |
-20.70 | 186.30 | 80 | 4.0 | 10 |
-20.24 | 185.10 | 86 | 5.1 | 61 |
-16.40 | 182.73 | 391 | 4.0 | 16 |
-19.60 | 184.53 | 199 | 4.3 | 21 |
-21.63 | 180.77 | 592 | 4.3 | 21 |
-21.60 | 180.50 | 595 | 4.0 | 22 |
-21.77 | 181.00 | 618 | 4.1 | 10 |
-21.80 | 183.60 | 213 | 4.4 | 17 |
-21.05 | 180.90 | 616 | 4.3 | 10 |
-10.80 | 165.80 | 175 | 4.2 | 12 |
-17.90 | 181.50 | 589 | 4.0 | 12 |
-22.26 | 171.44 | 83 | 4.5 | 25 |
-22.33 | 171.46 | 119 | 4.7 | 32 |
-24.04 | 184.85 | 70 | 5.0 | 48 |
-20.40 | 186.10 | 74 | 4.3 | 22 |
-15.00 | 184.62 | 40 | 5.1 | 54 |
-27.87 | 183.40 | 87 | 4.7 | 34 |
-14.12 | 166.64 | 63 | 5.3 | 69 |
-23.61 | 180.27 | 537 | 5.0 | 63 |
-21.56 | 185.50 | 47 | 4.5 | 29 |
-21.19 | 181.58 | 490 | 5.0 | 77 |
-18.07 | 181.65 | 593 | 4.1 | 16 |
-26.00 | 178.43 | 644 | 4.9 | 27 |
-20.21 | 181.90 | 576 | 4.1 | 16 |
-28.00 | 182.00 | 199 | 4.0 | 16 |
-20.74 | 180.70 | 589 | 4.4 | 27 |
-31.80 | 180.60 | 178 | 4.5 | 19 |
-18.91 | 169.46 | 248 | 4.4 | 33 |
-20.45 | 182.10 | 500 | 4.5 | 37 |
-22.90 | 183.80 | 71 | 4.3 | 19 |
-18.11 | 181.63 | 568 | 4.3 | 36 |
-23.80 | 184.70 | 42 | 5.0 | 36 |
-23.42 | 180.21 | 510 | 4.5 | 37 |
-23.20 | 184.80 | 97 | 4.5 | 13 |
-12.93 | 169.52 | 663 | 4.4 | 30 |
-21.14 | 181.06 | 625 | 4.5 | 35 |
-19.13 | 184.97 | 210 | 4.1 | 22 |
-21.08 | 181.30 | 557 | 4.9 | 78 |
-20.07 | 181.75 | 582 | 4.7 | 27 |
-20.90 | 182.02 | 402 | 4.3 | 18 |
-25.04 | 179.84 | 474 | 4.6 | 32 |
-21.85 | 180.89 | 577 | 4.6 | 43 |
-19.34 | 186.59 | 56 | 5.2 | 49 |
-15.83 | 167.10 | 43 | 4.5 | 19 |
-23.73 | 183.00 | 118 | 4.3 | 11 |
-18.10 | 181.72 | 544 | 4.6 | 52 |
-22.12 | 180.49 | 532 | 4.0 | 14 |
-15.39 | 185.10 | 237 | 4.5 | 39 |
-16.21 | 186.52 | 111 | 4.8 | 30 |
-21.75 | 180.67 | 595 | 4.6 | 30 |
-22.10 | 180.40 | 603 | 4.1 | 11 |
-24.97 | 179.54 | 505 | 4.9 | 50 |
-19.36 | 186.36 | 100 | 4.7 | 40 |
-22.14 | 179.62 | 587 | 4.1 | 23 |
-21.48 | 182.44 | 364 | 4.3 | 20 |
-18.54 | 168.93 | 100 | 4.4 | 17 |
-21.62 | 182.40 | 350 | 4.0 | 12 |
-13.40 | 166.90 | 228 | 4.8 | 15 |
-15.50 | 185.30 | 93 | 4.4 | 25 |
-15.67 | 185.23 | 66 | 4.4 | 34 |
-21.78 | 183.11 | 225 | 4.6 | 21 |
-30.63 | 180.90 | 334 | 4.2 | 28 |
-15.70 | 185.10 | 70 | 4.1 | 15 |
-19.20 | 184.37 | 220 | 4.2 | 18 |
-19.70 | 182.44 | 397 | 4.0 | 12 |
-19.40 | 182.29 | 326 | 4.1 | 15 |
-15.85 | 185.90 | 121 | 4.1 | 17 |
-17.38 | 168.63 | 209 | 4.7 | 29 |
-24.33 | 179.97 | 510 | 4.8 | 44 |
-20.89 | 185.26 | 54 | 5.1 | 44 |
-18.97 | 169.44 | 242 | 5.0 | 41 |
-17.99 | 181.62 | 574 | 4.8 | 38 |
-15.80 | 185.25 | 82 | 4.4 | 39 |
-25.42 | 182.65 | 102 | 5.0 | 36 |
-21.60 | 169.90 | 43 | 5.2 | 56 |
-26.06 | 180.05 | 432 | 4.2 | 19 |
-17.56 | 181.23 | 580 | 4.1 | 16 |
-25.63 | 180.26 | 464 | 4.8 | 60 |
-25.46 | 179.98 | 479 | 4.5 | 27 |
-22.23 | 180.48 | 581 | 5.0 | 54 |
-21.55 | 181.39 | 513 | 5.1 | 81 |
-15.18 | 185.93 | 77 | 4.1 | 16 |
-13.79 | 166.56 | 68 | 4.7 | 41 |
-15.18 | 167.23 | 71 | 5.2 | 59 |
-18.78 | 186.72 | 68 | 4.8 | 48 |
-17.90 | 181.41 | 586 | 4.5 | 33 |
-18.50 | 185.40 | 243 | 4.0 | 11 |
-14.82 | 171.17 | 658 | 4.7 | 49 |
-15.65 | 185.17 | 315 | 4.1 | 15 |
-30.01 | 181.15 | 210 | 4.3 | 17 |
-13.16 | 167.24 | 278 | 4.3 | 17 |
-21.03 | 180.78 | 638 | 4.0 | 14 |
-21.40 | 180.78 | 615 | 4.7 | 51 |
-17.93 | 181.89 | 567 | 4.1 | 27 |
-20.87 | 181.70 | 560 | 4.2 | 13 |
-12.01 | 166.66 | 99 | 4.8 | 36 |
-19.10 | 169.63 | 266 | 4.8 | 31 |
-22.85 | 181.37 | 397 | 4.2 | 15 |
-17.08 | 185.96 | 180 | 4.2 | 29 |
-21.14 | 174.21 | 40 | 5.7 | 78 |
-12.23 | 167.02 | 242 | 6.0 | 132 |
-20.91 | 181.57 | 530 | 4.2 | 20 |
-11.38 | 167.05 | 133 | 4.5 | 32 |
-11.02 | 167.01 | 62 | 4.9 | 36 |
-22.09 | 180.58 | 580 | 4.4 | 22 |
-17.80 | 181.20 | 530 | 4.0 | 15 |
-18.94 | 182.43 | 566 | 4.3 | 20 |
-18.85 | 182.20 | 501 | 4.2 | 23 |
-21.91 | 181.28 | 548 | 4.5 | 30 |
-22.03 | 179.77 | 587 | 4.8 | 31 |
-18.10 | 181.63 | 592 | 4.4 | 28 |
-18.40 | 184.84 | 221 | 4.2 | 18 |
-21.20 | 181.40 | 560 | 4.2 | 12 |
-12.00 | 166.20 | 94 | 5.0 | 31 |
-11.70 | 166.30 | 139 | 4.2 | 15 |
-26.72 | 182.69 | 162 | 5.2 | 64 |
-24.39 | 178.98 | 562 | 4.5 | 30 |
-19.64 | 169.50 | 204 | 4.6 | 35 |
-21.35 | 170.04 | 56 | 5.0 | 22 |
-22.82 | 184.52 | 49 | 5.0 | 52 |
-38.28 | 177.10 | 100 | 5.4 | 71 |
-12.57 | 167.11 | 231 | 4.8 | 28 |
-22.24 | 180.28 | 601 | 4.2 | 21 |
-13.80 | 166.53 | 42 | 5.5 | 70 |
-21.07 | 183.78 | 180 | 4.3 | 25 |
-17.74 | 181.25 | 559 | 4.1 | 16 |
-23.87 | 180.15 | 524 | 4.4 | 22 |
-21.29 | 185.80 | 69 | 4.9 | 74 |
-22.20 | 180.58 | 594 | 4.5 | 45 |
-15.24 | 185.11 | 262 | 4.9 | 56 |
-17.82 | 181.27 | 538 | 4.0 | 33 |
-32.14 | 180.00 | 331 | 4.5 | 27 |
-19.30 | 185.86 | 48 | 5.0 | 40 |
-33.09 | 180.94 | 47 | 4.9 | 47 |
-20.18 | 181.62 | 558 | 4.5 | 31 |
-17.46 | 181.42 | 524 | 4.2 | 16 |
-17.44 | 181.33 | 545 | 4.2 | 37 |
-24.71 | 179.85 | 477 | 4.2 | 34 |
-21.53 | 170.52 | 129 | 5.2 | 30 |
-19.17 | 169.53 | 268 | 4.3 | 21 |
-28.05 | 182.39 | 117 | 5.1 | 43 |
-23.39 | 179.97 | 541 | 4.6 | 50 |
-22.33 | 171.51 | 112 | 4.6 | 14 |
-15.28 | 185.98 | 162 | 4.4 | 36 |
-20.27 | 181.51 | 609 | 4.4 | 32 |
-10.96 | 165.97 | 76 | 4.9 | 64 |
-21.52 | 169.75 | 61 | 5.1 | 40 |
-19.57 | 184.47 | 202 | 4.2 | 28 |
-23.08 | 183.45 | 90 | 4.7 | 30 |
-25.06 | 182.80 | 133 | 4.0 | 14 |
-17.85 | 181.44 | 589 | 5.6 | 115 |
-15.99 | 167.95 | 190 | 5.3 | 81 |
-20.56 | 184.41 | 138 | 5.0 | 82 |
-17.98 | 181.61 | 598 | 4.3 | 27 |
-18.40 | 181.77 | 600 | 4.1 | 11 |
-27.64 | 182.22 | 162 | 5.1 | 67 |
-20.99 | 181.02 | 626 | 4.5 | 36 |
-14.86 | 167.32 | 137 | 4.9 | 22 |
-29.33 | 182.72 | 57 | 5.4 | 61 |
-25.81 | 182.54 | 201 | 4.7 | 40 |
-14.10 | 166.01 | 69 | 4.8 | 29 |
-17.63 | 185.13 | 219 | 4.5 | 28 |
-23.47 | 180.21 | 553 | 4.2 | 23 |
-23.92 | 180.21 | 524 | 4.6 | 50 |
-20.88 | 185.18 | 51 | 4.6 | 28 |
-20.25 | 184.75 | 107 | 5.6 | 121 |
-19.33 | 186.16 | 44 | 5.4 | 110 |
-18.14 | 181.71 | 574 | 4.0 | 20 |
-22.41 | 183.99 | 128 | 5.2 | 72 |
-20.77 | 181.16 | 568 | 4.2 | 12 |
-17.95 | 181.73 | 583 | 4.7 | 57 |
-20.83 | 181.01 | 622 | 4.3 | 15 |
-27.84 | 182.10 | 193 | 4.8 | 27 |
-19.94 | 182.39 | 544 | 4.6 | 30 |
-23.60 | 183.99 | 118 | 5.4 | 88 |
-23.70 | 184.13 | 51 | 4.8 | 27 |
-30.39 | 182.40 | 63 | 4.6 | 22 |
-18.98 | 182.32 | 442 | 4.2 | 22 |
-27.89 | 182.92 | 87 | 5.5 | 67 |
-23.50 | 184.90 | 61 | 4.7 | 16 |
-23.73 | 184.49 | 60 | 4.7 | 35 |
-17.93 | 181.62 | 561 | 4.5 | 32 |
-35.94 | 178.52 | 138 | 5.5 | 78 |
-18.68 | 184.50 | 174 | 4.5 | 34 |
-23.47 | 179.95 | 543 | 4.1 | 21 |
-23.49 | 180.06 | 530 | 4.0 | 23 |
-23.85 | 180.26 | 497 | 4.3 | 32 |
-27.08 | 183.44 | 63 | 4.7 | 27 |
-20.88 | 184.95 | 82 | 4.9 | 50 |
-20.97 | 181.20 | 605 | 4.5 | 31 |
-21.71 | 183.58 | 234 | 4.7 | 55 |
-23.90 | 184.60 | 41 | 4.5 | 22 |
-15.78 | 167.44 | 40 | 4.8 | 42 |
-12.57 | 166.72 | 137 | 4.3 | 20 |
-19.69 | 184.23 | 223 | 4.1 | 23 |
-22.04 | 183.95 | 109 | 5.4 | 61 |
-17.99 | 181.59 | 595 | 4.1 | 26 |
-23.50 | 180.13 | 512 | 4.8 | 40 |
-21.40 | 180.74 | 613 | 4.2 | 20 |
-15.86 | 166.98 | 60 | 4.8 | 25 |
-23.95 | 184.64 | 43 | 5.4 | 45 |
-25.79 | 182.38 | 172 | 4.4 | 14 |
-23.75 | 184.50 | 54 | 5.2 | 74 |
-24.10 | 184.50 | 68 | 4.7 | 23 |
-18.56 | 169.05 | 217 | 4.9 | 35 |
-23.30 | 184.68 | 102 | 4.9 | 27 |
-17.03 | 185.74 | 178 | 4.2 | 32 |
-20.77 | 183.71 | 251 | 4.4 | 47 |
-28.10 | 183.50 | 42 | 4.4 | 17 |
-18.83 | 182.26 | 575 | 4.3 | 11 |
-23.00 | 170.70 | 43 | 4.9 | 20 |
-20.82 | 181.67 | 577 | 5.0 | 67 |
-22.95 | 170.56 | 42 | 4.7 | 21 |
-28.22 | 183.60 | 75 | 4.9 | 49 |
-27.99 | 183.50 | 71 | 4.3 | 22 |
-15.54 | 187.15 | 60 | 4.5 | 17 |
-12.37 | 166.93 | 291 | 4.2 | 16 |
-22.33 | 171.66 | 125 | 5.2 | 51 |
-22.70 | 170.30 | 69 | 4.8 | 27 |
-17.86 | 181.30 | 614 | 4.0 | 12 |
-16.00 | 184.53 | 108 | 4.7 | 33 |
-20.73 | 181.42 | 575 | 4.3 | 18 |
-15.45 | 181.42 | 409 | 4.3 | 27 |
-20.05 | 183.86 | 243 | 4.9 | 65 |
-17.95 | 181.37 | 642 | 4.0 | 17 |
-17.70 | 188.10 | 45 | 4.2 | 10 |
-25.93 | 179.54 | 470 | 4.4 | 22 |
-12.28 | 167.06 | 248 | 4.7 | 35 |
-20.13 | 184.20 | 244 | 4.5 | 34 |
-17.40 | 187.80 | 40 | 4.5 | 14 |
-21.59 | 170.56 | 165 | 6.0 | 119 |
This dataset includes 1000 records of earthquakes and their location on the globe. If we wanted to plot all of them at once, it would be overwhelming.
As we did before, let’s look some basic summaries of this new
dataset. The summary
function breaks data into quantiles,
but quantile
does this a bit cleaner without
mean
in the middle:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.00 4.30 4.60 4.62 4.90 6.40
## 0% 25% 50% 75% 100%
## 4.0 4.3 4.6 4.9 6.4
As you can see, the majority of earthquakes have a magnitude below 5. If we wanted to plot earthquakes on a map, we may want a way to differentiate them based on their magnitude. We can do this via binning.
Using the new function qunatile
, let’s break up the
quake data based on magnitude and add this new vector to the dataset
quakes:
## lat long depth mag stations quant
## 1 -20.42 181.62 562 4.8 41 3
## 2 -20.62 181.03 650 4.2 15 1
## 3 -26.00 184.10 42 5.4 43 4
## 4 -17.97 181.66 626 4.1 19 1
## 5 -20.42 181.96 649 4.0 11 1
## 6 -19.68 184.31 195 4.0 12 1
Because we split the data into quantiles, there should be roughly the same number in each group. At your table, verify this is in fact true. How many data points are in each quantile?
Rather than have your data labeled 1-4, you may be interested in a more specific labeling scheme. Here, I am going to assign color values to each category with the lowest magnitude having grey value and the highest category having red value.
We will use the function map
. First, let’s examine the
range of latitude and longitude values in this dataset:
## [1] -38.59 -10.72
## [1] 165.67 188.13
Let’s use the world
map to project these earthquakes.
We’ll initialize a map and add points from our dataset. Note we’ve
specified the limits of the plot according to our data, but added a bit
of a buffer. This allows us to zoom out a bit to see where we are. Feel
free to make your own adjustments here:
Finally, let’s use adjust how these data are plotted based on the quantile bins we made earlier: